Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Polymers (Basel) ; 16(9)2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38732662

RESUMEN

The goal of the study was to compare the surface characteristics of typical implant materials used in orthopedic surgery and traumatology, as these determine their successful biointegration. The morphological and chemical structure of Vortex plate anodized titanium from commercially pure (CP) Grade 2 Titanium (Ti2) is generally used in the following; non-cemented total hip replacement (THR) stem and cup Ti alloy (Ti6Al4V) with titanium plasma spray (TPS) coating; cemented THR stem Stainless steel (SS); total knee replacement (TKR) femoral component CoCrMo alloy (CoCr); cemented acetabular component from highly cross-linked ultrahigh molecular weight polyethylene (HXL); and cementless acetabular liner from ultrahigh molecular weight polyethylene (UHMWPE) (Sanatmetal, Ltd., Eger, Hungary) discs, all of which were examined. Visualization and elemental analysis were carried out by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS). Surface roughness was determined by atomic force microscopy (AFM) and profilometry. TPS Ti presented the highest Ra value (25 ± 2 µm), followed by CoCr (535 ± 19 nm), Ti2 (227 ± 15 nm) and SS (170 ± 11 nm). The roughness measured in the HXL and UHMWPE surfaces was in the same range, 147 ± 13 nm and 144 ± 15 nm, respectively. EDS confirmed typical elements regarding the investigated prosthesis materials. XPS results supported the EDS results and revealed a high % of Ti4+ on Ti2 and TPS surfaces. The results indicate that the surfaces of prosthesis materials have significantly different features, and a detailed characterization is needed to successfully apply them in orthopedic surgery and traumatology.

2.
Materials (Basel) ; 17(7)2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38612007

RESUMEN

(1) Background: The retention of intraradicular posts is an important factor for the prognosis of endodontically treated teeth. The purpose of this study was to evaluate the push-out bond strength (PBS) of the posts relating to their diameter and region of the root. (2) Methods: A total of 40 premolar teeth (decoronated and root canal-filled) were divided into four groups (n = 10). After post-space preparation, different sizes (1.0, 1.2, 1.5, and 2.0 mm) of glass fiber posts were luted with resin cement into the root canals. After placement, 2 mm thick slices were cut from the roots according to their apical, middle, and coronal regions (n = 116). Push-out tests were carried out in a universal testing machine on each slice. A statistical evaluation of the data was applied. (3) Results: When comparing the diameter, the 2.0 mm posts had the highest PBS (111.99 ± 10.40 N), while the 1.0 mm posts had the lowest PBS (99.98 ± 8.05 N). Divided by the surface of the bonded area, the average PBS value was the highest for the 1.0 mm posts (18.20 ± 1.67 MPa) and the lowest for the 2.0 mm posts (12.08 ± 1.05 MPa). (4) Conclusions: Within the limitations of the study, when comparing the regions of the roots, no significant differences were found among the PBS values of the three regions (p = 0.219). When comparing the diameters, significant differences were shown between the PBS values of the four groups (p = 0.023 and p = 0.003, respectively).

3.
BMC Oral Health ; 24(1): 76, 2024 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-38218822

RESUMEN

BACKGROUND: Navigated endodontics is a cutting-edge technology becoming increasingly more accessible for dental practitioners. Therefore, it is necessary to clarify the ideal technical parameters of this procedure to prevent collateral damage of the surrounding tissues. There is a limited number of studies available in published scientific literature referencing the possible collateral thermal damage due to high-speed rotary instruments used in guided endodontic drilling. The aim of our study was to investigate the different drilling parameters and their effect upon the temperature elevations measured on the outer surface of teeth during guided endodontic drilling. METHODS: In our in vitro study, 72 teeth with presumably narrow root canals were prepared using a guided endodontic approach through a 3D-printed guide. Teeth were randomly allocated into six different test groups consisting of 12 teeth each, of which, four parameters affecting temperature change were investigated: (a) access cavity preparation prior to endodontic drilling, (b) drill speed, (c) cooling, and (d) cooling fluid temperature. Temperature changes were recorded using a contact thermocouple electrode connected to a digital thermometer. RESULTS: The highest temperature elevations (14.62 °C ± 0.60 at 800 rpm and 13.76 °C ± 1.24 at 1000 rpm) were recorded in the groups in which drilling was performed without prior access cavity preparation nor without a significant difference between the different drill speeds (p = 0.243). Access cavity preparation significantly decreased temperature elevations (p < 0.01) while drilling at 800 rpm (8.90 °C ± 0.50) produced significantly less heating of the root surface (p < 0.05) than drilling at 1000 rpm (10.09 °C ± 1.32). Cooling significantly decreased (p < 0.01) temperature elevations at a drill speed of 1000 rpm, and cooling liquid temperatures of 4-6 °C proved significantly (p < 0.01) more beneficial in decreasing temperature elevations (1.60 °C ± 1.17) than when compared with room temperature (21 °C) liquids (4.01 °C ± 0.22). CONCLUSIONS: Based on the results of our study, guided endodontic drilling at drill speeds not exceeding 1000 rpm following access cavity preparation, with constant cooling using a fluid cooler than room temperature, provides the best results in avoiding collateral thermal damage during navigated endodontic drilling of root canals.


Asunto(s)
Odontólogos , Preparación del Conducto Radicular , Humanos , Temperatura , Rol Profesional , Calor , Cavidad Pulpar/cirugía
4.
BMC Oral Health ; 23(1): 575, 2023 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-37596610

RESUMEN

BACKGROUND: The purpose of this in vitro study was to compare the accuracy of implant placement in model surgeries according to the design of the drills (straight drills or step drills) used to finalize the implant bed during pilot-guided static computer-assisted implant surgery (sCAIS). METHODS: Model surgeries were carried out on resin models randomly assigned to three study groups. Virtual planning software (coDiagnostiX 10.6, Dental Wings, Montreal, Canada) was used to plan the implant positions. In Groups 1 and 2, pilot-guided sCAIS was performed. Straight drills were used in Group 1, and step drills were used in Group 2 to finalize the implant beds. In Group 3, fully guided sCAIS was performed using a universal fully guided kit (RealGUIDE Full Surgical Kit 3DIEMME, RealGUIDE, Cantù, Como, Italy). A total of 90 dental implants (Callus Pro, Callus Implant Solutions GmbH, Nuremberg, Germany) were placed (six implants per model, five models per study group). The primary outcome variables (angular deviation, coronal global deviation, and apical global deviation) were calculated for all implants based on the comparison of the preoperative surgical plan with the postoperative scans. RESULTS: Group 2 (coronal global deviation, 0.78 ± 0.29 mm; apical global deviation, 1.02 ± 0.56 mm) showed significantly lower values of both global deviation variables than Group 1 (coronal global deviation, 0.95 ± 0.20 mm; apical global deviation, 1.42 ± 0.49 mm). However, there was no significant difference in angular deviation between Groups 1 and 2 (7.56 ± 2.92° and 6.44 ± 2.84°). Group 3 produced significantly lower values of all three primary outcome variables (angular deviation, 2.36 ± 0.90°; coronal global deviation, 0.59 ± 0.28 mm; apical global deviation, 0.90 ± 0.29 mm) than Group 1 and significantly lower angular deviation and coronal global deviation values than Group 2. CONCLUSIONS: The design of the drills used to finalize implant osteotomies during pilot-guided sCAIS influences dental implant placement accuracy. Using step drills instead of straight drills for final osteotomies decreases deviation from the surgical plan. The fully guided approach performed better than the pilot-guided sCAIS.


Asunto(s)
Implantación Dental , Implantes Dentales , Cirugía Asistida por Computador , Humanos , Implantación Dental/instrumentación , Proyectos de Investigación
5.
J Funct Biomater ; 13(4)2022 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-36412843

RESUMEN

The study evaluated the interaction of a titanium dental implant surface with three different antibacterial solutions: chlorhexidine, povidone-iodine, and chlorine dioxide. Implant surface decontamination is greatly challenging modern implant dentistry. Alongside mechanical cleaning, different antibacterial agents are widely used, though these could alter implant surface properties. Commercially pure (CP) grade 4 titanium (Ti) discs were treated with three different chemical agents (chlorhexidine 0.2% (CHX), povidone-iodine 10% (PVPI), chlorine dioxide 0.12% (ClO2)) for 5 min. Contact angle measurements, X-ray photoelectron spectroscopy (XPS) analysis, and cell culture studies were performed. Attachment and proliferation of primary human osteoblast cells were investigated via MTT (dimethylthiazol-diphenyl tetrazolium bromide), alamarBlue, LDH (lactate dehydrogenase), and fluorescent assays. Contact angle measurements showed that PVPI-treated samples (Θ = 24.9 ± 4.1) gave no difference compared with controls (Θ = 24.6 ± 5.4), while CHX (Θ = 47.2 ± 4.1) and ClO2 (Θ = 39.2 ± 9.8) treatments presented significantly higher Θ values. All samples remained in the hydrophilic region. XPS analysis revealed typical surface elements of CP grade 4 titanium (Ti, O, and C). Both MTT and alamarBlue cell viability assays showed similarity between treated and untreated control groups. The LDH test revealed no significant difference, and fluorescent staining confirmed these results. Although there was a difference in surface wettability, a high proliferation rate was observed in all treated groups. The in vitro study proved that CHX, PVPI, and ClO2 are proper candidates as dental implant decontamination agents.

6.
Polymers (Basel) ; 14(21)2022 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-36365482

RESUMEN

Class II malocclusion is one of the most common dental anomalies and the use of intermaxillary elastomers is the standard method in its treatment. However, orthodontic elastics cannot exert continuous force over a period of time due to force degradation. Our goal was to mechanically characterize the different types of elastomers during static and cyclic loads, based on uniform methodology and examine the morphological changes after loading. Ten types of latex-containing and four latex-free intermaxillary elastics were examined from six different manufacturers. To determine the mechanical characteristics of the elastomers, tensile tests, cyclical tensile fatigue tests and 24 h relaxation tests were performed, and the elastics were also subjected to scanning electron microscopy (SEM) and Raman spectroscopy. Regardless of the manufacturer, the latex-containing elastomers did not show significant differences in the percentage of elongation at break during the tensile test. Only one type of latex-containing elastomer did not tear during the 24 h cyclical fatigue test. Fatigue was confirmed by electron microscopy images, and the pulling force reduced significantly. During the force relaxation test, only one latex-free ligature was torn; the force degradation was between 7.8% and 20.3% for latex ligatures and between 29.6% and 40.1% for latex-free elastomers. The results showed that dynamic loading was more damaging to ligatures than static loading, latex-containing elastomers were more resistant than latex-free elastics, and which observation could have clinical consequences or a potential effect on patient outcome.

7.
Heliyon ; 8(9): e10764, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36193518

RESUMEN

Objectives: The influence of energy drinks on dental materials are relatively under addressed. Our aim was to investigate the effect of energy drinks on dental materials used intraorally in young individuals. Commonly used preventive, restorative, and orthodontic materials were tested in vitro. Methods: The effect of two commercially available energy drinks (HELL, BURN) was investigated on different dental materials: machined, anodized Titanium (grade 5: Ti6Al4V) and composites (Grandio Seal, VOCO; Filtek Z250, 3M ESPE; Estelite SQ, TOKUYAMA). The roughness (Ra) and morphological changes were examined by atomic force microscopy (AFM) and scanning electron microscopy (SEM). Results: AFM and SEM revealed significant differences in the Ra and morphology of the samples. AFM results for the machined and anodized titanium samples showed that the two energy drinks modified the surface roughness differently; BURN changed the roughness of machined samples significantly, while anodized discs were not altered significantly by the two energy drinks. In case of composite samples there was no significant difference for the Estelite SQ, relative low differences for the Filtek Z250 and significant changes in the morphology and surface roughness of Grandio Seal. Significance: On all tested materials, changes in the surface roughness and morphology were more or less detected, proving energy drinks do in fact have a harmful effect. It can be concluded that material erosion depends on the material composition and particle arrangement. Where the surface is characterized by a regular, uniform particle arrangement, energy drinks are less able to influence the roughness, while for samples where the surface is rich in aggregates, the material erodes the surface much more easily.

8.
Heliyon ; 8(8): e10263, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36042714

RESUMEN

Objectives: Soft tissue integration of dental implants lags behind natural biological integration of teeth mainly because of non-optimal surface features. Peri-implant infections resulting in loss of supporting bone jeopardize the success of implants. Our aim was to compare an anodized surface design with a turned one for a more optimal surface. Methods: Morphological and chemical structures of turned and anodized Ti surfaces (grade 5: Ti6Al4V) discs were examined by scanning electron microscopy (SEM-EDS), energy dispersive X-ray spectroscopy (EDS), and atomic force microscopy (AFM). The hydrophilic or hydrophobic features of the surfaces were determined by dynamic contact angle measurement. Results: SEM and AFM revealed significant differences in the morphology and roughness (Ra) of the samples. Anodized discs presented a granular structure, while turned ones had circular grooves. The roughness was significantly higher for the anodized samples compared to the turned ones. XPS and EDS confirmed typical elements for both Ti6Al4V samples. Due to anodization, the amount of Ti (IV) had increased and Ti (III) had decreased in the thicker oxide layer. Anodized samples resulted in a more hydrophilic surface than the turned ones. Significance: The results suggest that the tested anodized samples present optimal surface characteristics to be used as abutment material for an optimal soft tissue integration.

9.
Arch Oral Biol ; 117: 104837, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32673821

RESUMEN

OBJECTIVE: Bacterial adhesion and colonization on implanted devices are major etiological factors of peri-implantitis in dentistry. Enhancing the antibacterial properties of implant surfaces is a promising way to reduce the occurrence of inflammations. In this in vitro study, the antibacterial potential of two nanocomposite surfaces were investigated, as possible new materials for implantology. MATERIAL AND METHODS: The structural and photocatalytic properties of the TiO2 and Ag-TiO2 (with 0.001 wt% plasmonic Ag content) photocatalyst containing polymer based composite layers were also studied and compared to the unmodified standard sandblasted and acid etched Ti discs (control). The presence of visible light induced reactive oxygen species was also verified and quantified by luminol based chemiluminescence (CL) probe method. The discs with adhered Streptococcus mitis were illuminated for 5, 10 and 15 min. The antibacterial effect was determined by the metabolic activities of the adhered and proliferated bacterial cells and protein assay at each time point. RESULTS: The Ag-TiO2 containing surfaces with obvious photocatalytic activity eliminated the highest amount of the metabolically active bacteria, compared to the control discs in the dark, after 15 min illumination. CONCLUSIONS: The plasmonic Ag-enhanced and illuminated surface exhibits significantly better antibacterial activity under harmless visible light irradiation, than the control Ti or TiO2 containing copolymer. The studied surface modifications could be promising for further, more complex investigations associated with dental research on infection prevention in connection with oral implantation.


Asunto(s)
Antibacterianos/farmacología , Luz , Streptococcus mitis/efectos de los fármacos , Titanio , Catálisis , Nanocompuestos , Titanio/farmacología
10.
Acta Microbiol Immunol Hung ; 67(2): 127-132, 2020 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-32160783

RESUMEN

The biofilm formation by oral bacteria on the implant surface is one of the most remarkable factors of peri-implant infections, which may eventually lead to bone resorption and loss of the dental implant. Therefore, the elimination of biofilm is an essential step for the successful therapy of implant-related infections. In this work we created a basic in vitro model to evaluate the antibacterial effect of three widely used antiseptics.Commercially pure (CP4) titanium sample discs with sand blasted, acid etched, and polished surface were used. The discs were incubated with mono-cultures of Streptococcus mitis and Streptococcus salivarius. The adhered bacterial biofilms were treated with different antiseptics: chlorhexidine-digluconate (CHX), povidone-iodine (PI), and chlorine dioxide (CD) for 5 min and the control discs with ultrapure water. The antibacterial effect of the antiseptics was tested by colorimetric assay.According to the results, the PI and the CD were statistically the most effective in the elimination of the two test bacteria on both titanium surfaces after 5 min treatment time. The CD showed significant effect only against S. salivarius.Based on our results we conclude that PI and CD may be promising antibacterial agents to disinfecting the peri-implant site in the dental practice.


Asunto(s)
Clorhexidina/análogos & derivados , Compuestos de Cloro/farmacología , Desinfectantes Dentales/farmacología , Óxidos/farmacología , Periimplantitis/prevención & control , Povidona Yodada/farmacología , Streptococcus mitis/efectos de los fármacos , Streptococcus salivarius/efectos de los fármacos , Antibacterianos/farmacología , Antiinfecciosos Locales/farmacología , Adhesión Bacteriana/efectos de los fármacos , Biopelículas/efectos de los fármacos , Clorhexidina/farmacología , Implantes Dentales/microbiología , Humanos , Periimplantitis/microbiología , Streptococcus mitis/crecimiento & desarrollo , Streptococcus salivarius/crecimiento & desarrollo , Titanio
11.
J Nanosci Nanotechnol ; 18(6): 3916-3924, 2018 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-29442727

RESUMEN

Failure of dental implants is caused mainly by peri-implant infections resulting in loss of supporting bone. Since there is no ideal therapy of peri-implantitis, the focus of research has been shifted toward better prevention and the development of antibacterial surfaces. In our study we examined the attachment and proliferation of primary epithelial and MG-63 osteosarcoma cells on Ti dental implants coated with photocatalytic nanohybrid films. Two polyacrylate resin based layers were investigated on commercially pure (CP4) Ti discs: 60 wt% TiO2/40 wt% copolymer and 60 wt% Ag-TiO2/40 wt% copolymer ([Ag] = 0,001 wt%). Surface properties were examined by scanning electron microscopy (SEM) and profilometry. Cell responses were investigated via dimethylthiazol-diphenyl tetrazolium bromide (MTT) and visualized with fluorescence microscopy. Profilometry revealed significant changes in surface roughness of TiO2 (Ra = 1.79 µm) and Ag-TiO2 layers (Ra = 5.76 µm) compared to the polished (Ra(P) = 0.13 µm) and sandblasted, acid-etched control surfaces (Ra(SA) = 1.26 µm). MTT results demonstrated that the attachment (24 h) of epithelial cells was significantly higher on the Ag-TiO2 coated samples (OD540 = 0.079) than on the polished control surfaces (OD540 = 0.046), whereas MG-63 cells did not show any difference in attachment between the groups. After one week, epithelial cells showed slightly increased survival as compared to MG-63 cells. The results suggest that the tested coatings are cytocompatible with epithelial cells, which means that they are not only antibacterial, but they also appear to be promising candidates for implantological use.


Asunto(s)
Proliferación Celular/efectos de los fármacos , Células Epiteliales/efectos de los fármacos , Nanocompuestos , Titanio , Implantes Dentales , Humanos , Microscopía Electrónica de Rastreo , Propiedades de Superficie
12.
J Mater Sci Mater Med ; 28(10): 145, 2017 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-28823063

RESUMEN

For many practitioners, longevity of full glass ceramic crowns in the posterior area, molars and premolars, remains a real challenge. The purpose of this article is to identify and evaluate the parameters that can significantly influence their resistance when preparing a tooth. The analysis proposed in this article relies on interrelated studies conducted at three levels: in vitro (mechanical tests), in silico (finite elements simulations) and in vivo (clinical survival rates). The in vitro and the in silico studies proved that an appropriate variation of the geometric design of the preparations enables to increase up to 80% the mechanical strength of ceramic reconstructions. The in vivo clinical study of CAD/CAM full ceramic crowns was performed in accordance with the principles stated within the in vitro and the in silico studies and provided a 98.97% success rate over a 6 years period. The variations of geometric design parameters for dental preparation allows for reconstructions with a mechanical breaking up to 80% higher than that of a non-appropriate combination. These results are confirmed in clinical practice.


Asunto(s)
Diente Premolar , Cerámica , Diseño Asistido por Computadora , Diente Molar , Corona del Diente , Cementación/métodos , Materiales Dentales , Fracaso de la Restauración Dental , Humanos , Ensayo de Materiales , Mecánica
13.
Fogorv Sz ; 110(1): 20-24, 2017 Mar.
Artículo en Inglés, Húngaro | MEDLINE | ID: mdl-29847064

RESUMEN

The combined use of high fluoride (F-) concentration and acidic pH can weaken the corrosion resistance of titanium (Ti). Caries prophylactic products contain high amounts of F- and are applied at a low pH. The aim of our study was to determine whether the different forms of applied flouride has different effects on the growth of Streptococcus mutans on different titanium surfaces. Titanium with polished surface were treated with a gel (pH: 4,8) containing 1,25% olaflur, a rinse (pH: 4,4) containing 0,025% olaflur or a 1% aqueous solution of NaF at a pH of 4,5. Control discs were not treated. All discs were incubated with S. mutans for 21 days. To assess the amount of S. mutans protein assay analysis was performed at 5, 10 and 21 days. Scanning electron microscopic (SEM) investigations were also executed. By the 21st day significant differences could be observed in the bacterial protein quantity. The between group- comparisons showed that the rinse and gel were superior to NaF or control group (p < 0,01 and p < 0,05). Furthermore signs of corrosion could be observed in the group of gel treated discs. The results suggest that amine-fluoride content mouthwashes might be a suitable choice for prevention to the patients with dental implants.


Asunto(s)
Fluoruros/farmacología , Streptococcus mutans/efectos de los fármacos , Streptococcus mutans/crecimiento & desarrollo , Titanio , Contaminación de Equipos
14.
J Biomater Appl ; 31(1): 55-67, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-26896235

RESUMEN

Antibacterial surfaces have been in the focus of research for years, driven by an unmet clinical need to manage an increasing incidence of implant-associated infections. The use of silver has become a topic of interest because of its proven broad-spectrum antibacterial activity and track record as a coating agent of soft tissue implants and catheters. However, for the time being, the translation of these technological achievements for the improvement of the antibacterial property of hard tissue titanium (Ti) implants remains unsolved. In our study, we focused on the investigation of the photocatalysis mediated antibacterial activity of silver (Ag), and Ti nanoparticles instead of their pharmacological effects. We found that the photosensitisation of commercially pure titanium discs by coating them with an acrylate-based copolymer that embeds coupled Ag/Ti nanoparticles can initiate the photocatalytic decomposition of adsorbed S. salivarius after the irradiation with an ordinary visible light source. The clinical isolate of S. salivarius was characterised with MALDI-TOF mass spectrometer, while the multiplication of the bacteria on the surface of the discs was followed-up by MTT assay. Concerning practical relevance, the infected implant surfaces can be made accessible and irradiated by dental curing units with LED and plasma arc light sources, our research suggests that photocatalytic copolymer coating films may offer a promising solution for the improvement of the antibacterial properties of dental implants.


Asunto(s)
Materiales Biocompatibles Revestidos/administración & dosificación , Implantes Dentales/microbiología , Nanopartículas del Metal/administración & dosificación , Plata/administración & dosificación , Streptococcus salivarius/efectos de los fármacos , Titanio/química , Adsorción , Antibacterianos/administración & dosificación , Antibacterianos/química , Catálisis , Supervivencia Celular/efectos de los fármacos , Materiales Biocompatibles Revestidos/síntesis química , Luz , Ensayo de Materiales , Nanopartículas del Metal/química , Nanopartículas del Metal/ultraestructura , Tamaño de la Partícula , Polímeros/química , Plata/química , Streptococcus salivarius/crecimiento & desarrollo , Propiedades de Superficie/efectos de la radiación , Titanio/administración & dosificación , Titanio/efectos de la radiación
15.
Implant Dent ; 24(6): 675-9, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26134690

RESUMEN

OBJECTIVES: Acidic pH and high fluoride (F(-)) concentration impair the corrosion resistance of titanium (Ti). Caries-preventive products contain high amounts of F(-) and are applied at low pH. The purpose of this study was to evaluate whether fluoride applied in different forms has different short-, mid-, and long-term effects on the growth of the bacteria Streptococcus mutans. MATERIALS AND METHODS: Ti discs with polished surface were treated with a rinse containing 0.025% olaflur, a gel containing 1.25% olaflur, or a 1% aqueous solution of NaF (pH 4.5), and they were incubated with S mutans for 21 days. Control discs did not get prophylactic treatment. Protein assay analysis was performed at regular intervals to estimate the amount of S mutans. Scanning electron microscopic (SEM) images were also taken. RESULTS: Bacterial protein quantity became significantly different only by the 21st day. Fluoride in rinse and gel proved to be superior to NaF in aqueous solution or no treatment (P < 0.01 and P < 0.05, respectively). However, the discs treated with fluoride in gel showed signs of corrosion in SEM images. CONCLUSION: The results suggest that the use of fluoride-containing mouthwashes might be the best and safest oral hygienic choice for patients with oral implants. Furthermore, olaflur seems to be superior to NaF for long-term use at low pH.


Asunto(s)
Profilaxis Antibiótica/métodos , Fluoruros/uso terapéutico , Streptococcus mutans/efectos de los fármacos , Titanio , Diaminas/administración & dosificación , Diaminas/uso terapéutico , Fluoruros/administración & dosificación , Microscopía Electrónica de Rastreo , Fluoruro de Sodio/administración & dosificación , Fluoruro de Sodio/uso terapéutico , Streptococcus mutans/crecimiento & desarrollo , Factores de Tiempo
16.
J Breath Res ; 9(1): 016001, 2015 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-25557613

RESUMEN

The instrumental measurement of volatile sulphur compounds is a common practice to assess halitosis. One of the most widespread devices for that purpose is OralChroma(TM), a combination of a semiconductor gas sensor and a compact gas chromatograph (GC) system. Several lines of evidence indicate that although the hardware of OralChroma(TM) is fit for the precise measurement of volatile sulphur compounds (VSCs), its software needs revision to allow that precision. In this study we sought to develop software to solve this problem, and to test the utility of the new software in a population of patients and controls. The results were also compared with VSC measurements performed with Halimeter(®), another widespread device, so as to assess the correlation. A set of measurements involving volunteers (21 controls and 14 oral cancer patients) were conducted. The analysis of the chromatograms recorded by OralChroma(TM) indicated that the majority of the studied breath samples contained significant amounts of isoprene (the peak was around 100 s) and acetaldehyde (the peak was around 350 s), therefore OralChroma(TM) was also calibrated for both isoprene and acetaldehyde. A linear relationship was found between the concentration (in the range of 80-1400 ppbv for acetaldehyde and 40-560 ppbv for isoprene) and the area under the corresponding peak. In numerous cases the concentrations of VSCs calculated by the software of OralChroma(TM) required revision. In the new software, the concentrations of the VSCs, isoprene and acetaldehyde were determined by fitting the chromatograms with the sum of six Gaussian functions. Based on the findings of the present study we conclude that our new software allows an improved and instantaneous evaluation of OralChroma(TM) chromatograms with the additional possibility of determining the isoprene and acetaldehyde concentrations from breath samples.


Asunto(s)
Pruebas Respiratorias/métodos , Halitosis/diagnóstico , Sulfuro de Hidrógeno/análisis , Acetaldehído/análisis , Adulto , Pruebas Respiratorias/instrumentación , Butadienos/análisis , Calibración , Carcinoma de Células Escamosas/complicaciones , Estudios de Casos y Controles , Cromatografía de Gases/instrumentación , Cromatografía de Gases/normas , Femenino , Halitosis/etiología , Hemiterpenos/análisis , Humanos , Masculino , Persona de Mediana Edad , Neoplasias de la Boca/complicaciones , Pentanos/análisis , Programas Informáticos/normas
17.
J Dent ; 42(1): 7-14, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24269830

RESUMEN

OBJECTIVES: Health condition of the gingival tissues contacting the surfaces of fixed prostheses is a result of multiple etiologic factors. The aim of the investigation discussed here was to evaluate the attachment and proliferation rate of cultured human epithelial cells on three commonly used restorative materials under in vitro conditions. METHODS: Morphological and chemical structure of polished lithium-disilicate (IPS e.max Press, Ivoclar Vivadent AG, Germany), yttrium modified zirconium dioxide (5-TEC ICE Zirkon Translucent, Zirkonzahn GmbH Srl, Germany) and cobalt chromium alloy (Remanium star, Dentaurum GmbH & Co. KG, Germany) discs were examined by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and atomic force microscopy (AFM). Human epithelial cells harvested and cultured from one donor, were applied to investigate cell attachment (24h observation) and proliferation (72h observation) via dimethylthiazol-diphenyl tetrazolium bromide (MTT) and AlamarBlue(®) (AB) assays on control surface (cell-culture plate) and on the restorative materials (n=3×20 specimens/material). RESULTS: SEM and AFM revealed typical morphology and roughness features for the materials. Zirconia presented significantly higher Ra value. EDS confirmed typical elements on the investigated restorative materials: lithium-disilicate (Si, O); Zirconia (Zi, Y, O); CoCr (Co, Cr, W). All surfaces except CoCr exhibited significant cell proliferation according to MTT and AB assays after 72h compared to 24h. Among the restorative materials, CoCr samples showed the highest cell attachment as indicated by MTT assay. AB results showed that attachment and proliferation of human epithelial cells is supported more on lithium-disilicate. Both assays indicated the lowest value for zirconia. CONCLUSIONS: The results indicate that the restorative materials examined are equally suitable for subgingival restorations. Lithium-disilicate exhibited the best biocompatibility. CLINICAL SIGNIFICANCE: The examined materials are indicated for use in restorative procedures, directly contacting the sulcular epithelial tissues. Thus it is essential to monitor the biological acceptibility of these materials in order to better understand their clinical properties. The results indicate that Lithium-disilicate is a suitable material for such purposes.


Asunto(s)
Materiales Biocompatibles/farmacología , Materiales Dentales/farmacología , Mucosa Bucal/efectos de los fármacos , Adolescente , Adulto , Adhesión Celular/efectos de los fármacos , Técnicas de Cultivo de Célula , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Aleaciones de Cromo/química , Colorantes , Porcelana Dental/química , Porcelana Dental/farmacología , Células Epiteliales/efectos de los fármacos , Humanos , Indicadores y Reactivos , Microscopía de Fuerza Atómica , Microscopía Electrónica de Rastreo , Persona de Mediana Edad , Mucosa Bucal/citología , Oxazinas , Espectrometría por Rayos X , Propiedades de Superficie , Sales de Tetrazolio , Tiazoles , Factores de Tiempo , Xantenos , Adulto Joven , Itrio/química , Circonio/química
18.
Mater Sci Eng C Mater Biol Appl ; 33(7): 4251-9, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23910340

RESUMEN

Demand is increasing for shortening the long (3-6 months) osseointegration period to rehabilitate patients' damaged chewing apparatus in as short a time as possible. For dental implants, as for biomaterials in general, the bio- and osseointegration processes can be controlled at molecular and cellular levels by modification of the implant surface. One of the most promising of such surface modifications is laser ablation, as demonstrated by our previous results [46]. Commercially pure (CP4) sand-blasted, acid-etched titanium disks (Denti® System Ltd., Hungary) were irradiated with a KrF excimer laser (248 nm, fluence 0.4 J/cm(2), FWHM 18 ns, 2000 pulses), or with a Nd:YAG laser (532 nm, 1.3 J/cm(2), 10 ns, 200 pulses) then examined by SEM, AFM, and XPS. In vitro attachment (24 h) and proliferation (72 h) of MG-63 osteoblast cells were investigated via dimethylthiazol-diphenyl tetrazolium bromide (MTT), alamarBlue (AB) assays alkaline phosphatase quantification (ALP) and SEM. SEM and AFM revealed significant changes in morphology and roughness. XPS confirmed the presence of TiO2 on each sample; after Nd:YAG treatment a reduced state of Ti (Ti(3+)) was also observed. MTT, AB and ALP measurements detected an increase in the number of cells between the 24- and 72 hour observations; however, laser treatment did not affect cell attachment and proliferation significantly.


Asunto(s)
Materiales Biocompatibles/farmacología , Implantes Dentales , Rayos Láser , Osteoblastos/citología , Titanio/farmacología , Grabado Ácido Dental , Fosfatasa Alcalina/metabolismo , Adhesión Celular/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Humanos , Microscopía de Fuerza Atómica , Osteoblastos/efectos de los fármacos , Osteoblastos/enzimología , Osteoblastos/ultraestructura , Espectroscopía de Fotoelectrones
19.
Dent Mater ; 28(10): e229-38, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22717295

RESUMEN

OBJECTIVE: The dentin-enamel junction (DEJ) plays a crucial role in dental biomechanics; however, little is known about its structure and mechanical behavior. Nevertheless, natural teeth are a necessary model for prosthetic crowns. The mechanical behavior of the natural DEJ and the dentin ceramic junction (DCJ) manufactured with a CAD-CAM system are compared. METHODS: The reference samples undergo no modification, while the experimental samples were drilled to receive a cemented feldspathic ceramic crown. Longitudinally cut samples were used to achieve a planar object observation and to look "inside" the tooth. A complete apparatus enabling the study of the compressive mechanical behavior of the involved tooth by a non-contact laser speckle interferometry (SI) was developed to allow nanometric displacements to be tracked during the compression test. RESULTS: It is observed that the DEJ acted as a critical zone accommodating the movement between dentin and enamel. A smooth transition occurs between dentin and enamel. In the modeled prosthetic, the same kind of accommodation effects also occurs, but with a steeper transition slope between dentin and ceramic. SIGNIFICANCE: On the natural tooth, the stress accommodation arises from a differential behavior between enamel and dentin from the DEJ. In the ceramic crown, the cemented dentin-ceramic junction should play this role. This study demonstrates the possible realization of prosthetic crown reconstructions approaching biomechanical behaviors.


Asunto(s)
Cerámica/química , Coronas , Esmalte Dental/química , Diseño de Prótesis Dental/métodos , Dentina/química , Corona del Diente/química , Diseño Asistido por Computadora , Análisis del Estrés Dental , Humanos , Interpretación de Imagen Asistida por Computador , Interferometría/instrumentación , Interferometría/métodos
20.
Acta Microbiol Immunol Hung ; 59(1): 51-61, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22510287

RESUMEN

Fluorides may affect the oxide layer on titanium surface. Caries preventive mouthwashes or gels contain fluorides and are applied at low pH. The aim of the present work was to study whether various concentrations of fluoride at acidic pH cause changes in the surface structure on the polished region of Ti implants, and alter the adherence and colonization of bacteria. Commercially pure Ti grade 4 discs with a polished surface were treated with a mouthwash containing 0.025% fluoride, a gel containing 1.25% fluoride or a 1% aqueous solution of NaF (pH 4.5). The change of surface roughness of the samples and the colonization of Porphyromonas gingivalis strains were studied by scanning electron microscopy after 5 days of anaerobic incubation. The quantity of the bacterial protein was determined by protein assay analysis. Agents with high fluoride concentration at acidic pH increased the roughness of the Ti surface. A slight increase in the amount of bacteria was found on the surfaces treated with 1% NaF and gel in comparison with the control surface. This study suggested that a high fluoride concentration at acidic pH may hinder the development of a healthy transgingival epithelial junction on Ti implants, due to bacterial colonization.


Asunto(s)
Biopelículas/efectos de los fármacos , Caries Dental/prevención & control , Implantes Dentales/microbiología , Antisépticos Bucales/farmacología , Porphyromonas gingivalis/efectos de los fármacos , Titanio , Proteínas Bacterianas/análisis , Humanos , Concentración de Iones de Hidrógeno , Microscopía de Fuerza Atómica , Microscopía Electrónica de Rastreo , Porphyromonas gingivalis/fisiología , Fluoruro de Sodio/farmacología , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...